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SYNTHETIC STUDIES ON INDOLE ALKALOIDS. .1
SYNTHESIS OF 1-ETHYLINDOLO{2,3-a]QUINOLIZIDIN-2-ONE

Mario Rubiralta®, Anna Diez, and Cristina Vila

LaborabtydOrgaicchoany Faculty of Pharmacy
University of Barcelona, 08028 Barcelona, Spain

Summary: The synthesis of 1-ethylindolo[2,3-ajquinolizidin-2-one 3 is reported by potassium tert-butoxide
cyclization of N-hydroxyethyl-2-[1-(phenylisulfonyl)-3-indolyl]-4-piperidone ethylene acetal 10 followed by acid
treatment of the intermediate spkoindolenines 8.

In a previous work we have reported the synthesis of 3,4,6,7,12,12b-hexahydroindolo[2,3-a]quinolizidin-
2(1H)-one (1)1 and its 3-ethyl derivative 22 via an intramolecular cyclization of hydroxyethyipiperidylphenylsulionyl-
indoles 4 and 5 by the action of potassium fert-butoxide. However, 1-ethylindolo[2,3-alquinolizidin-2-one 3, which
can be considered a key intermediate in the synthesis of pentacyclic akaloids of vincamine type,3 has not yet been
synthesized using this strategy, since the cyclization of 6 occured upon the indole nitrogen atom. We have also
described4 an improved preparation of 1 from N-hydroxyethyl-2-[1 -(phenyisulfonyl)-3-indolyl]-4-piperidone ethylene
acetal (9) by potassium fert-butoxide followed by boron trifiuoride-etherate and final acetal hydrolysis. The cyclization
was shown to undergo through the formation of the spiroindolenine 7 which rearranges in the acidic medium.5 We
report now the successful application of the improved method to the synthesis of 1-ethylindolo[2,3-a]quinolizidin-2-
one 3.
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The starting hydroxyethylpiperidine 10 was prepared by alkylation of the secondary piperidine 15, obtained
by our usual method.8 Thus, the condensation of 1-{phenyisulfonyl)indole-3-carbaldehyde 117 and amino acetal 12
led to imine 13 which underwent a Mannich type cyclization on treatment with anhydrous p-toluenesuifonic acid,
furnishing a 1:2 mixture of piperidines 14 and 15 , respectively. Rather surprisingly, only the major trans isomer 18
could be alkylated to 10 with 2-bromoethanol (80% yield). Treatment of 10 with potassium tert-butoxide (2 eq., dry
THF, 0°C, 30 min) was first followed by LIAIH4 reduction (2 eq., dry THF, refiux, 15 min) leading to a 2.5:2:1 mixture
(45% yield) of spiroindolines 16,8 17,9, and 1810, respectively. The stereochemical assignment of the major
spiroindoline 16, in which the C-9 and C-14b bond is &, corresponding to the “A series®, 11 and the ethyl
substituent is equatorial, was based on the 13C-nmr data, wherein C-9 is more deshielded in A series (A5 2.5 ppm),
and C-5 c.a. 3 ppm shielded when the ethyl chain is axial as in compound 17 due to a “y-gauche"” effect.

When the mixture of indolenine Intermediates 8 were reacted with boron trifluoride-etherate (1.5 eq., 60°C,
3h) only enaminone 2012 was isolated in 25% yield, which was cyclized to indoloquinoiizidin-2-one 313 ,as the major
product (60 % yield), by additional heating (90°C, 6 h) in aqueous suffuric acid.14
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Reagents and conditions. i) Benzene, 30 min at 0°C, 6h at reflux, and 16 h Dean-Stark; ii) p-TsOH, benzene,
reflux, 1h; iiij BrCHaCH20H, K2CO3, CHaCHoOH, reflux, 15 h; iv) KtBuO, dry THF, 0°C, 30 min, No; v) LiAHg4, dry
THF, reflux.

Scheme 2

The enaminone formation can be accounted for by considering that in the anhydrous acid medium the
intermediates are in equilibrium with 3,4,5,6-tetrahydropyridinium salt 19, which is transformed into enaminone 20
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during the reaction work-up. Such equilibrium would as well be consistent with the formation of the three
spiroindolines 16~18 when the LIAIH,, reduction is carried out. Furthermore, the major formation of 20 in comparison
withlhe:i—doeﬂ’oylenaminonefmmt‘ woukd be induced by the presence of the ethyl subetituent on piperidine C-3
position, which prevents the usual expected rearrangement.

On the other hand, it is worth commenting that our racemic target compound 3 was also obtained from
1,2,5,6,7,7a-hexahydro-4H-pyrido[1°,2°:1,2]pyrazino{4,3-alindole (21) by acetal hydrolysis and rearrangement on
aqueous acid treatment (4N HCI, reflux, 4 h, 95%), and that such rearrangement had not been observed on the non-
substituted series. _ T
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Reagents and conditions. i) KBuO (2 eq.), dry THF, 0°C, 30 min, Np; i) BF3.E20 (1.5 eq), dry THF, 60°C, 3 h,
No; iil) work-up; iv) 10% aqueous HySO4, 90°C, 6 h; v) KIBUO, 1:1 hexane-ether, 0°C, 30 min; vi) 4N HCI, reflux, 4h.

Scheme 3
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